On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations
نویسندگان
چکیده
In this paper, we prove a sample-path comparison principle for the nonlinear stochastic fractional heat equation on R with measure-valued initial data. We give quantitative estimates about how close to zero the solution can be. These results extend Mueller’s comparison principle on the stochastic heat equation to allow more general initial data such as the (Dirac) delta measure and measures with heavier tails than linear exponential growth at ±∞. These results generalize a recent work by Moreno Flores [25], who proves the strict positivity of the solution to the stochastic heat equation with the delta initial data. As one application, we establish the full intermittency for the equation. As an intermediate step, we prove the Hölder regularity of the solution starting from measure-valued initial data, which generalizes, in some sense, a recent work by Chen and Dalang [6]. MSC 2010 subject classifications: Primary 60H15. Secondary 60G60, 35R60.
منابع مشابه
Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملRandom differential inequalities and comparison principles for nonlinear hybrid random differential equations
In this paper, some basic results concerning strict, nonstrict inequalities, local existence theorem and differential inequalities have been proved for an IVP of first order hybrid random differential equations with the linear perturbation of second type. A comparison theorem is proved and applied to prove the uniqueness of random solution for the considered perturbed random differential eq...
متن کاملBasic results on distributed order fractional hybrid differential equations with linear perturbations
In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کامل